Первому в мире групповому полету космических кораблей – 54 года Ровно 54 года назад в СССР стартовал первый в мировой истории эксперимент с групповым полетом двух космических кораблей – «Восток-3» и «Восток-4». читать дальше11 августа 1962 года был запущен пилотируемый космический корабль «Восток-3» с космонавтом Андрияном Николаевым на борту. Затем, 12 августа, на орбиту вывели «Восток-4», пилотируемый Павлом Поповичем. Запуски кораблей выполнялись с Байконура, с одного стартового стола. Запуск двух ракетно-космических комплексов с одной стартовой площадки в течение двух суток потребовал четкой и слаженной работы всех служб космодрома. Благодаря большой точности в выведении на орбиту обоих кораблей параметры их орбит практически совпали. Космонавты проводили медико-биологические и научно-технические эксперименты. Их изображения передавались на Землю по телесети СССР и Интервидения. В том полете Николаев впервые в мировой практике отстегнулся от катапультируемого кресла и без скафандра парил в кабине в условиях невесомости. Николаев на «Востоке-3» сделал 64 витка вокруг Земли и установил рекорд продолжительности полета – трое суток 22 часа 22 минуты, а Попович на «Востоке-4» – 48 витков и пробыл в космосе двое суток 22 часа 44 минуты. Оба корабля приземлились 15 августа в Карагандинской области. (с)
Чем дольше отстаиваешь права, тем неприятнее осадок.
20 лет назад, в ночь с 5 по 6 июля 1989 года, в истории изучения планеты Земля произошло важное событие. Джон Рандольф Уинклер, отставной профессор, 73-летний ветеран NASA, направил на грозовые облака высокочувствительную видеокамеру, а потом, просматривая запись кадр за кадром, обнаружил две яркие вспышки, которые в отличие от молний шли не вниз, к земле, а вверх, к ионосфере. Так были открыты спрайты — самые крупные из высотных разрядов в атмосфере Земли. Они наглядно подтвердили существование на нашей планете глобальной электрической цепи и дали новые возможности для ее исследования.
Разряды, зарегистрированные Джоном Уинклером, стартовали с высоты 14 километров, а их размеры составляли более 20 километров. Механизм, приводящий к их появлению, был неясен, и требовалась большая научная смелость, чтобы объявить об электрическом разряде, поднимающемся от границ тропосферы на такую высоту.
Чтобы получить более убедительные доказательства, воодушевленный Уинклер дождался, когда Миннесоту накрыл ураган «Хьюго» и в ночь с 22 на 23 сентября снова записал на видеокамеру много подобных высотных разрядов над грозовыми облаками. Интересно, что формально он вел это исследование как любитель, поскольку оно не входило ни в какие программы научных работ. Но Уинклер, конечно, не был любителем и действовал решительно, как человек, четко осознающий свою миссию. От прошлой работы в NASA у него осталась неисправная высокоскоростная видеокамера. Он уговорил декана физического факультета Университета Миннесоты выделить на ее ремонт 7000 долларов и установил у себя дома оборудование для анализа записей.
Фото 3.
Уникальные кадры гигантских разрядов испугали Уинклера не меньше, чем обрадовали. А что если такой разряд ударит в летательный аппарат? И ученый обратился к коллегам из NASA с предупреждением. Те засомневались. Что за разряды? Но из уважения к прошлому Уинклера взялись просмотреть записи, сделанные во время полетов космических челноков. И они не поверили своим глазам: на пленках обнаружилось больше десятка подобных разрядов. Уинклер попал в точку. Будучи профессионалом, он довел дело до логического конца — публикаций в ведущих научных журналах Geophysical Research Letters (1989) и Science (1990).
Статьи буквально вызвали шок у специалистов по астрономии, атмосферному электричеству, радиофизике, атмосферной акустике, физике газового разряда и аэрокосмической безопасности. После этих публикаций в NASA уже не могли отмахнуться от возможной угрозы космическим кораблям и начали развернутое исследование высотных разрядов. За три года подготовки к этой работе с Уинклером не раз советовались, но в саму программу так и не включили.
Фото 4.
В первую же ночь наблюдений, 7 июля 1993 года, на научной станции вблизи Форт-Коллинса (штат Колорадо) удивленные исследователи зафиксировали больше 240 высотных разрядов. На следующую ночь, чтобы исключить ошибку в определении высоты, была задействована специализированная летающая лаборатория на борту самолета DC-8. Результаты превзошли все ожидания: огромные вспышки были обнаружены на высотах не менее 50—60 километров. В честь непоседливого Пака из шекспировского «Сна в летнюю ночь» им дали название спрайтов, то есть духов воздуха. Естественно, встал вопрос: почему об этих разрядах ничего не знали раньше, если каждый мощный грозовой фронт порождает их десятками?
Фото 5.
Анализ литературы показал, что на протяжении сотни лет многие люди видели над облаками не обычные и очень большие разряды. Их называли ракетными молниями, облачно-стратосферными разрядами, восходящими молниями и даже молниями «облако — космос». Но в отсутствие надежных доказательств странные сообщения очевидцев просто игнорировались. Отмахнулись даже от такого известного и заслуженного специалиста в области атмосферного электричества, как нобелевский лауреат Чарлз Томсон Вильсон, который еще в 1956 году писал в своей статье о подобном явлении. Понадобились чутье, опыт, упорство и бесстрашие профессора Джона Уинклера, чтобы «этого не может быть» очень быстро превратилось в «да кто же этого не знает». Теперь на многочисленных роликах в Интернете можно в деталях рассмотреть эти разряды.
Фото 6.
Джон Уинклер умер в 2001 году. Больше работ по высотным разрядам он не делал, хотя с трудом верится, что не хотел — после такого-то успеха. На его публикацию в Science исправно ссылались, но в проекты, видимо, не включали. В некрологе, написанном коллегами, сквозит обида за него. А зря. Каждый день Джону Рандольфу Уинклеру салютуют красно-фиолетовые спрайты, ведь он научил людей их видеть.
Фото 7.
Вскоре исследователи обнаружили целое световое шоу, разворачивающееся в верхних слоях атмосферы над свинцовыми грозовыми фронтами. Главные актеры в нем (в порядке снизу вверх): голубые джеты, которых иногда называют гномами (раз уж они внизу), посередине красно-фиолетовые спрайты и гало, а над ними красноватые кольца — парящие в вышине эльфы. Но, конечно, не надо забывать режиссера, стоящего за грандиозным спектаклем, — это всем известные грозовые облака и молнии. Вообще-то еще недавно труппа была многочисленнее, но исследователи постепенно избавились от духов, медуз (некоторые виды спрайтов) и прочей звучной «живности».
Надо заметить, что упражнения в красивых названиях не просто забавы в стиле «физики шутят», как может показаться на первый взгляд. Как и в шоу-бизнесе, в науке продвижение идей и направлений играет важную роль, ведь и здесь, и там идет борьба за ресурсы. Область науки, которая на слуху у публики, обычно финансируется более щедро. Вспомните хотя бы нанотехнологии, о которых все говорят, но никто толком не может объяснить, что это такое и почему туда нужно направить столько средств. Но вернемся к нашему спектаклю и подробнее представим всех почтеннейшей публике.
Фото 8.
Эльфы — самые эфемерные и короткоживущие в семействе высотных разрядов. Эти светящиеся красно-фиолетовые кольца возникают в нижней ионосфере на высотах 80—100 километров. Меньше чем за миллисекунду свечение, возникнув в центре, расширяется до 300—400 километров и угасает. Изучены эльфы не очень подробно, вероятно, потому, что не вызывают особых споров и не сулят серьезного продвижения в понимании природы атмосферных разрядов. Они рождаются через три десятитысячных секунды (300 микросекунд) после сильной молнии, ударившей из грозового облака в землю. Ее ствол становится «передающей антенной», от которой со скоростью света стартует мощная сферическая электромагнитная волна очень низкой частоты. За 300 микросекунд она как раз добирается до высоты 100 километров, где возбуждает красно-фиолетовое свечение молекул азота. Чем дальше уходит волна, тем шире становится кольцо, пока не угасает с удалением от источника.
Фото 9.
Голубые джеты, или гномы, — самые загадочные, редкие и трудные для наблюдения существа в ансамбле новых высотных разрядов. Выглядит гном, как голубой узкий перевернутый конус, стартующий с верхнего края грозового облака и достигающий иногда 40-километровой высоты. Скорость распространения голубых джетов — от 10 до 100 км/с. Но самое странное, что их появление не всегда связано с видимыми разрядами молний. На высотах, откуда стартуют джеты, давление еще относительно высокое, и неудивительно, что они голубые. Так светят молния, коронный разряд на проводах, искровой разряд и даже пламя высокой температуры. Это тоже свечение молекул азота, но не в красно-фиолетовой полосе, как в случае эльфов, а в ультрафиолетово-голубой.
Фото 10.
Кроме обычных джетов с верхней кромки облака иногда срываются вверх так называемые голубые стартеры. Они не поднимаются выше 30 километров. Одни ученые полагают, что это просто разряд молнии, направленный вверх, в область, где давление быстро падает, и потому стартеры расширяются гораздо сильнее обычных молний. Другие считают их недоразвитыми джетами.
Но самый интересный тип голубых джетов назвали гигантскими джетами. Стартуя не очень далеко от поверхности Земли, они достигают 90-километровой высоты. Интерес геофизиков к гигантским джетам под стать их размерам, ведь эти разряды совершают «беспосадочный перелет» из тропосферы прямо в ионосферу. Однако наблюдаются они чрезвычайно редко, и надежно их регистрировали не более дюжины раз. При этом живут они доли секунды, что, в принципе, позволяет заметить их простым глазом.
Фото 11.
Теория джетов делает лишь первые шаги. Пока неясно даже, на что похоже это явление. Если по своей природе они близки к светящемуся каналу молнии в стадии развития, то становится понятно, почему рождение джета не связано с молниями: он сам — молния. Но, возможно, более близкой аналогией является разряд внутри грозового облака, который питает энергией канал молнии. В этом случае понять природу джетов будет еще труднее, поскольку теория таких разрядов находится в начальной стадии развития.
Фото 12.
Красным спрайтам посвящено наибольшее число наблюдений и публикаций. Это настоящие поп-звезды среди высотных атмосферных разрядов. Иногда кажется, что интерес к ним столь же перегрет, как и к популярным певцам. Чем же они заслужили такое внимание? Дело, вероятно, в том, что их несложно наблюдать (если, конечно, знать о том, что это возможно). Каждые сутки на земном шаре рождаются десятки тысяч спрайтов, и просто удивительно, что их так долго не замечали.
Спрайты — очень яркие объемные вспышки, возникающие на высоте 70—90 километров и спускающиеся вниз на 30—40 километров, а иногда и больше. В верхней части их ширина достигает порой десятков километров. Это самые объемные из высотных разрядов. Как и эльфы, спрайты состоят в прямом родстве с молниями, но не со всеми. Большинство молний бьет из той части облака, которая заряжена отрицательно (она в среднем расположена ближе к земле). Но 10% молний, достигающих земли, стартуют из области положительного заряда, а так как основная область расположения положительного заряда больше, чем отрицательного, то положительные молнии мощнее. Считается, что именно такие мощные разряды порождают спрайты, вспыхивающие в мезосфере примерно через сотую долю секунды после разряда класса «облако — земля».
Фото 13.
Красно-фиолетовый цвет спрайтов, как и у эльфов, связан с атмосферным азотом. Верхняя часть спрайта светится однородно, а вот ниже 70 километров разряд как будто сплетается из каналов толщиной в сотни метров. Их структура — самая интересная для изучения особенности спрайтов. Каналы называют стримерами по аналогии с хорошо известными разрядами-иголочками у острых краев предметов в грозовую погоду и у высоковольтных проводов. Правда, толщина земных стримеров порядка миллиметра, а в спрайтах они в 100 000 раз больше. Пока неясно, почему диаметр стримеров так сильно увеличивается — гораздо быстрее, чем падает с высотой давление воздуха.
Фото 14.
Гало — это однородное красновато-фиолетовое свечение на высоте около 80 километров. Причина разряда, видимо, та же, что и у верхней части спрайтов, но в отличие от них гало всегда возникает прямо над вспышкой молнии. Спрайты же позволяют себе вольность находиться где-нибудь сбоку. Существует, видимо, некая связь между спрайтами и гало, но ее механизм пока неясен. Они появляются то вместе, то порознь. Возможно, гало и есть верхняя часть спрайтов, когда напряженности электрического поля не хватило, чтобы разряд распространился в более плотный нижний воздух.
Фото 15.
Согласно Географической карте гроз, наибольшими шансами увидеть спрайты обладают жители экваториальной и тропической зоны Земного шара. Именно в этой области случается до 78% всех гроз. Жители России также могут наблюдать спрайты. Пик гроз в нашей стране приходится на июль-август месяц. Именно в это время любители астрономии могут увидеть такое красивое явление как спрайты.
Согласно американскому Справочнику наблюдения за спрайтами и гигантскими джетами, для того, чтобы увидеть спрайты, наблюдатель должен находиться на расстоянии примерно 100 километров от эпицентра грозы. Для того чтобы наблюдать джеты, ему следует навести оптику на 30-35 градусов по направлению к грозовой области. Тогда он сможет наблюдать часть ионосферы на высоте до 50 километров, именно в этой области чаще всего появляются джеты. Чтобы наблюдать спрайты, следует навести бинокль на угол 45-50 градусов, что будет соответствовать области неба на высоте около 80 км – месту, где рождаются спрайты.
Фото 16.
Для лучшего и более детального изучения спрайтов, джетов, а тем более эльфов, наблюдателю лучше воспользоваться специальной киноаппаратурой, которая позволит детально зафиксировать небесные вспышки. Наиболее удачное время для охоты за спрайтами в России – период с середины июля по середину августа.Интересные факты
Спрайты, как и молнии, встречаются не только на Земле, но и на других планетах Солнечной системы. Предположительно именно спрайты были зафиксированы космическими исследовательскими аппаратами во время сильных штормов на Венере, Сатурне и Юпитере.
Спрайты и эльфы возникают на такой большой высоте из-за сильной ионизации воздуха галактической пылью. На высоте свыше 80 километров проводимость тока в десять миллиардов раз выше, чем в приземных слоях атмосферы.
Название «спрайты» происходит от наименования лесных духов, о которых идет речь в комедии Уильяма Шекспира «Сон в летнюю ночь».
Фото 17.
Спрайты были известны человечеству задолго до 1989 года. Люди высказывали разные гипотезы на счет природы этого явления, в том числе и то, что вспышки света являются инопланетными космическими кораблями. И только после того, как Джону Уинклеру удалось снять кадры спрайтов в ионосфере, ученые доказали, что они имеют электрическое происхождение.
Цвет спрайтов, джетов и эльфов разнится от высоты, на которой они появляются. Дело в том, что в околоземной атмосфере сосредоточено больше воздуха, тогда как в верхних слоях ионосферы наблюдается высокая концентрация азота. Воздух горит синим и белым пламенем, азот – красным. По этой причине джеты, которые находятся ниже спрайтов, имеют преимущественно синий цвет, а сами спрайты и, более высокие, эльфы – красноватый оттенок.
Фото 18.
Фото 19.
Фото 20.
Фото 21.
А вот видео очень редкого явления - восходящая молния:
Жизнь хитра! Когда у меня на руках все карты - она внезапно решает играть в шахматы…
Юпитер часто рассматривают, как «неудавшуюся звезду», поэтому неудивительно, что многие футурологи и создатели научной фантастики пытаются показать и описать в своих произведениях и работах процесс, носящий название планетарное звездообразование. Согласно новому исследованию, этот процесс действительно возможен. Более того, если мы хотим однажды найти разумные внеземные цивилизации, то должны в первую очередь искать планеты, а точнее газовые гиганты, которые уже прошли или находятся в процессе этого планетарного звездообразования.
читать дальшеВ готовящейся к публикации статье журнала Британского межпланетного общества физик и астробиолог Милан М. Сиркович из Белградской астрономической обсерватории предлагает для ученых проекта SETI совершенно новый подход к поиску признаков существования продвинутых внеземных цивилизаций. Сиркович предлагает искать «звездообразные» объекты в планетарных системах, так как они могут носить признаки внеземной астроинженерии. К такому выводу ученого подтолкнуло вдохновение, которое пришло после прочтения работы британского физика Мартина Дж. Фогга, в которой тот предлагает превратить Юпитер в своеобразную мини-звезду.
Те из вас, которые читали классику «2010: Год вступления в контакт» (1982) Артура Кларка, должно быть знакомы с концептом планетарного звездообразования. В этой новелле инопланетные монолиты трансформируют Юпитер в маленькую звезду, что в свою очередь приводит к тому, что Европа (один из спутников газового гиганта) превращается из ледяного мира в пышные джунгли. Спустя семь лет после написания этой книги, Мартин Фогг решил взять этот очень научно-фантастический концепт и превратить его уже в настоящую науку. В своей работе за 1989 год «Превращение Юпитера в звезду: первый шаг к терраформированию Галилеевых спутников» Фогг объясняет, как этот по-настоящему удивительный пример астроинженерии можно на самом деле реализовать.
Идея заключается в высвобождении гравитационной энергии газового гиганта за счет миниатюрной черной дыры, направленной прямо в сам центр массы Юпитера. В отличии от термоядерной реакции нашего Солнца или любой другой «нормальной» звезды, компактная черная дыра в процессе аккреции поглотит массу Юпитера изнутри, заставив высвободиться огромный объем энергии.
Эта энергия будет многократно поглощаться и опять высвобождаться, окутывая всю поверхность Юпитера. Как только энергия достигнет поверхности, она рассеется по всей площади, как и любой другой вид звездного излучения. По мнению Фогга, если мы превратим таким образом Юпитер в звезду, то его Галилеевы спутники тоже претерпят процесс трансформации и превратятся в подходящие для обитания миры. Более того, вокруг звездообразованного Юпитера мы сможем построить некое подобие компактной оболочки Дайсона для захвата его энергии.
Сиркович считает, что Фогг думал в правильном направлении и люди будущего смогут вывести данный концепт на еще более продвинутый уровень.
«Если возле звездных объектов были спутники и другие планеты — а мы недавно уже находили планеты возле коричневых карликов, — то эти площадки являются могут являться гораздо более благоприятными местами для обитания, чем может показаться на первый взгляд», — комментирует Сиркович.
«А так как эти объекты очень многочисленны, они еще и могли бы представлять отличные «заправочные станции» для межзвездных путешествий».
Сиркович считает, что его идея настолько хороша, что мы должны принять во внимание возможность того, что продвинутые инопланетяне уже занимаются такими проектами исполинских масштабов. Сиркович говорит, что вполне разумно принимать Принцип Коперника, то есть идеи, согласно которой, мы и Земля никакие не особенные на фоне общего мироздания и ничто не должно (не способно) препятствовать зарождению и развитию жизни (в том числе и продвинутых цивилизаций) в других уголках Вселенной.
С момента публикации работы Фогга, мы многое узнали о черных дырах и о том, как они работают. И хотя это может прозвучать безумно и невероятно опасно, по мнению Сирковича, продвинутые постлюди или внеземные цивилизации найдут способ создания миниатюрных черных дыр, научатся искусственно контролировать их рост и даже управлять их движением в космическом пространстве.
Конечно же это процесс планетарного звездообразования будет крайне опасным и возможно не стоить тех рисков, которые непременно будут его сопровождать. Любая манипуляция с черными дырами — включая самые маленькие, — будет невероятно опасным занятием. Сиркович беспокоится, что очень много факторов (включая ошибки в создания и заканчивая террористическим сценарием) могут привести к тому, что миниатюрная черная дыра может обрушиться на Землю или какую-то другую обитаемую к тому моменту планету.
«В завершающих стадиях звездообразования, примерно через 100 миллионов лет после начала, трансформированный в звезду Юпитер будет невероятно ярким и может стать весьма нестабильным», — говорит ученый.
«Это в конечном итоге может поставить под вопрос существование остальной Солнечной системы, а возможно и системы, которая будет находиться рядом с ней на тот момент. Решение вопроса потребует реализации других астроинженерных проектов. Но, если подумать, к тому моменту, как продвинутые цивилизации, которые останутся уже после нас, найдут способ превращения планеты в звезду, я думаю, они уже будут способны решить все сопровождающие вопросы и учесть все возможные последствия».
Наверное, не стоит говорить, насколько сложно искать планеты прошедшие процесс звездообразования. Однако по мнению Сирковича, это, все же, возможно.
«Наблюдательная астрономия за последние десятилетия резко продвинулась вперед. И хотя поиск звездообразующихся объектов является весьма сложной задачей, с какой стороны не посмотри, все же такая возможность может появиться гораздо раньше, чем мы того ожидаем».
В рамках простого исследования массы и радиуса объекта можно будет понять, какие звезды являются для привычных и знакомых нам звезд слишком меленькими. Особенность их яркости и светоотдачи тоже будут говорить о многом. Кроме того, если предполагаемая звездообразующаяся планета находится в бинарной системе, особенно в такой бинарной системе, где в обитаемой зоне звезды-компаньона находятся планеты, то такие кандидаты должны рассматриваться в первую очередь.
Основной проблемой, по мнению Сирковича, будет определение того, является ли в том или ином случае процесс планетарного звездообразования естественным или искусственным. Вполне возможно, что мы будем делать множество ложных выводов на этот счет.
«Мы настолько привыкли смотреть на естественные процессы звездной эволюции, что используем яркость звезды в качестве определяющего фактора ее радиуса, возраста и массы. В случае с «искусственной звездой» такие методы определения могут ввести нас в заблуждение», — говорит ученый.
В своем исследовании Сиркович указывает на то, что у нас уже имеются телескопические технологии, необходимые для поиска планетарных звездообразований, поэтому начать искать мы можем в любой момент. Единственным же препятствием, стоящим на пути новых знаний, является отсутствие интереса или попросту лень. Сейчас основным трендом, стимулирующим поиск пришельцев является «дайсонский» SETI — поиск инопланетных мегаструктур, вроде гипотетической сферы Дайсона.
По мнению Сирковича, хотя объекты, вроде загадочной «мерцающей звезды» KIC 8462852 действительно представляет большой интерес для астрономии, доказать то, что процессы с ними связанные являются результатом работы продвинутых внеземных цивилизаций будет крайне сложно. Тем не мене, с дальнейшим развитием наших телескопических технологий мы будем все лучше и лучше понимать, на что же мы на самом деле смотрим. И может оказаться так, что мы своими глазами сможем увидеть внеземные цивилизации за работой.
Дважды в год на Гавайях, солнце оказывается в абсолютном зените, от чего тени падают строго вниз. Прямые вертикальные предметы выглядят неествественно, словно их прифотошопили. Называют это явление "Lahaina noon", что означает "Жестокое солнце".
1. Вторжение звездных кораблей(1977) «Легион летающего змея» - инопланетяне, пришельцы-телепаты с далекой планеты Альфа похищают людей, которые необходимы им в качестве подопытного материала для экспериментов по размножению. Как же интересно смотреть старые фильмы! И как изменились наши знания за столько короткое для Истории время.
2. Познать неизведанное(2016) Безусловно, вслед за Марсианином будет еще много фильмом на такую тему. До Марсианина фильмов тоже не мало) Фильм Познать неизведанное, как Марсианин, открывают нам другую сторону путешествий в космосе неприглядную, однообразную, страшную и смертельно опасную...
Думаю, на самом деле мы боимся оказаться в одиночестве...
читать дальше Самое большое созвездие Самое большое из 88 созвездий неба - Гидра (иначе говоря, Водяная Змея). Область неба, входящая в созвездие Гидры, - 1302,84 квадратного градуса, что составляет 3,16% всей площади неба. Следующее по величине - созвездие Девы, занимающее 1294,43 квадратного градуса. Не удивительно, что созвездие Гидры получило такое название: оно и в самом деле представляет собой длинную тонкую полосу, протянувшуюся на четверть небесного круга. Большая часть “змеиного тела" лежит к югу от небесного экватора, а его общая длина - более 100°. В одной из легенд Гидра представляется многоголовым монстром, которого убил Геркулес. Несмотря на свой размер, Гидра на небе особо не выделяется. В основном она состоит из довольно слабых звезд, и найти ее нелегко. Самая яркая звезда - Альфард, оранжевый гигант второй звездной величины, находящаяся на расстоянии 130 световых лет.
Самое маленькое созвездие Самое маленькое созвездие - Южный Крест, занимающее область неба всего в 68,45 квадратного градуса, что эквивалентно 0,166% всей площади неба. Первые упоминания об этом созвездии мы находим у европейских мореплавателей XVI столетия, которые посещали южное полушарие. Несмотря на небольшой размер, Южный Крест - очень заметное созвездие, ставшее символом южного полушария. Оно содержит двадцать звезд ярче звездной величины 5,5. Три из четырех звезд, образующих его крест, - звезды 1-й величины. В созвездии Южного Креста находится рассеянное звездное скопление (Каппа Южного Креста, или скопление "Шкатулка драгоценностей"), которое многие наблюдатели считают одним из самых красивых на небе.
Самая яркая галактика на небе Самая яркая галактика на небе - Большое Магелланово Облако (БМО). Оно находится в созвездии Золотой Рыбы и в северных широтах наблюдаться не может. Как БМО, так и Малое Магелланово Облако (ММО), которое занимает по яркости второе место, выглядят как отдельные части Млечного Пути . Интегральная визуальная звездная величина БМО и ММО составляет соответственно 0 и 2. Эти две небольших галактики являются спутниками Млечного Пути и считаются самыми близкими к Солнечной системе галактиками (после карликовой галактики в Стрельце). Однако яркость карлика в Стрельце нельзя определить, так как эта галактика находится в процессе слияния с нашей Галактикой и ее звезды нельзя отличить от множества других звезд в пределах Млечного Пути.
Самая близкая к Земле звезда Самая близкая к Земле звезда - Проксима Центавра. Она находится на расстоянии 4,25 световых лет от Солнца. Считается, что вместе с двойной звездой Альфа Центавра A и B она входит в свободную тройную систему. Двойная звезда Альфа Центавра находится от нас немного дальше, на расстоянии 4,4 световых лет. Солнце лежит в одном из спиральных рукавов Галактики (Орионовом рукаве), на растоянии около 28000 световых лет от ее центра. В месте расположения Солнца звезды обычно удалены друг от друга на несколько световых лет.
Самая старая звезда Самые старые звезды в Галактике почти наверняка принадлежат шаровым скоплениям. Полагают, что все шаровые скопления имеют примерно одинаковый возраст - около 12 - 13 миллиардов лет. Солнце образовалось сравнительно недавно, около 5 миллиардов лет тому назад. Имеются достаточные основания для того, чтобы считать шаровые скопления очень старыми. Во-первых, массивные звезды этих скоплений или находятся на поздних стадиях эволюции, или уже давно закончили свою жизнь, став сверхновыми. Во-вторых, шаровые скопления находятся повсеместно в сферическом гало Галактики, что заставляет считать их остатками той эры, которая предшествовала коллапсу Галактики к существующей ныне дискообразной форме. В-третьих, в звездах шаровых скоплений содержится очень мало химических элементов тяжелее водорода и гелия (все эти тяжелые элементы астрономы называют "металлами"). Дело в том, что в эпоху образования первых звезд атомы металлов еще не существовали в природе. Металлы сами родились внутри звезд и лишь затем попали в межзвездные облака, откуда вошли в состав более молодых звезд (таких, как Солнце), в атмосферах которых мы их и наблюдаем.аем.аем. Звезда с самым низким содержанием металла – это HE 0107-5240. Доля атомов металлов в её атмосфере в 2 миллиона раз меньше, чем на Солнце. Она находится на расстоянии 36000 световых лет в направлении созвездия Феникс. Странным образом в настоящее время эта звезда не входит в шаровое скопление. Неизвестно, является ли эта звезда одиночкой, которая эволюционировала сама по себе, или она была извергнута из шарового скопления много миллионов лет назад.
Звезда с самой большой светимостью В 1997 г. астрономы, работающие с Космическим телескопом “Хаббл”, обнаружили звезду, которую следовало бы занести в книгу рекордов. Они назвали ее “Звездой в Пистолете” по форме окружающей ее туманности. Хотя излучение этой звезды в 10 миллионов раз превышает по мощности излучение Солнца, невооруженным глазом ее не видно, т. к. она находится вблизи от центра Млечного Пути на расстоянии 25000 световых лет от Земли и скрыта большими облаками пыли. Космический телескоп обнаружил ее инфракрасное излучение, которое может проникать через пылевые массы. Однако при определении самых ярких звезд возникает проблема, связанная с тем, являются ли кандидаты на звание рекордсмена и в самом деле отдельными звездами, или же они представляют собой близкие кратные системы. До обнаружения “Звезды в Пистолете” наиболее серьезным претендентом была Эта Киля (h Car), светимость которой в 4 миллиона раз превышает светимость Солнца. После вспышки в середине XIX столетия, когда она была второй по яркости звездой в небе, Эта Киля заметно потускнела, потому что теперь она окружена облаком выброшенного вещества, вероятно, в несколько раз превышающим массу Солнца. Кандидатом на звание звезды самой большой светимости недавно стала звезда LBV 1806-20 в Стрельце, удаленная от Земли на 45 тыс. световых лет. Её излучение очень сильно поглощается пылью Млечного Пути, поэтому пока удалось лишь определить, что светимость звезды LBV 1806-20 составляет от 5 до 40 млн светимостей Солнца. Масса LBV 1806-20 превышает солнечную в 150-200 раз. Не исключено, что это двойная звезда, поскольку существование одиночных звезд такой большой массы теория объяснить не может. Но если исследования покажут, что LBV 1806-20 одиночная звезда со светимостью более 10 млн солнечных, то звание чемпиона перейдет к ней.
Самая холодная звезда Считается, что самые холодные "настоящие" звезды имеют температуру поверхности около 2600 K. Примером такой звезды является Глизе 105 C, изображение которой было получено Космическим телескопом "Хаббл" в 1995 г. Главный фактор, определяющий поверхностную температуру звезды, - ее масса. Теория предсказывает, что нижний предел массы звезды составляет 8% от массы Солнца. Ниже этого предела газовое облако, сгущающееся под действием сил тяготения, уже не может разогреться настолько сильно, чтобы началась самоподдерживающаяся реакция ядерного синтеза. Облака газа, которые не смогли стать звездой, поскольку их масса лежит ниже этого предела, превращаются в то, что называется коричневым карликом. Глизе 105 C, как кажется, представляет собой не коричневый карлик , а настоящую звезду небольшой массы. Ее масса оценивается в 8-9% массы Солнца. Глизе 105 C является в двойной системе компаньоном большей звезды, Глизе 105A (известной также как HD 16160).
Самая горячая звезда Самые горячие из известных звезд - центральные звезды планетарных туманностей. Было обнаружено, что их поверхностные температуры доходят до 250 000 K. Примером планетарной туманности с такой горячей центральной звездой служит туманность NGC 2240. При таких высоких температурах большая часть энергии излучения приходится на ультрафиолетовый диапазон спектра, так что на изображениях туманности в оптическом диапазоне центральная звезда часто не видна. Планетарные туманности формируются в тех случаях, когда на определенной стадии эволюции звезда сбрасывает свои внешние слои. Центральная звезда такой туманности - это то, что прежде было ядром звезды, а поверхностная температура центральной звезды продолжают повышаться и после того, как туманность сформировалась. Максимальная достижимая температура предопределена исходной массой звездного ядра. Как полагают, массы таких звезд составляют от 0,55 до 1,2 масс Солнца. Чем больше масса, тем выше максимальная поверхностная температура звезды.
Самые яркие звезды По дошедшим до нас сведениям, впервые стал различать звезды по их яркости древнегреческий астроном Гиппарх еще во II веке до н. э. Для оценки светимости разных звезд он разделил их на 6 степеней, введя в обиход понятие звездной величины. В самом начале XVII века немецкий астроном И. Байер предложил обозначать степень яркости звезд в разных созвездиях буквами греческого алфавита. Наиболее яркие звезды получили название «альфа» такогото созвездия, следующие по яркости - «бета» и т.д. Ярчайшими на нашем видимом небосклоне являются звезды Денеб из созвездия Лебедь и Ригель из созвездия Орион. Светимость каждой из них превышает светимость Солнца соответственно в 72,5 тыс. и 55 тыс. раз, а удаленность от нас - 1600 и 820 световых лет. В созвездии Орион находится еще одна ярчайшая звезда - третья по величине светимости звезда Бетельгейзе. По силе светоизлучения она ярче солнечного света в 22 тыс. раз. Больше всего ярких звезд, хотя блеск их периодически меняется, собрано именно в созвездии Орион. Звезда Сириус из созвездия Большого Пса, которую считают самой яркой среди наиболее близких к нам звезд, ярче нашего светила всего лишь в 23,5 раза; расстояние до нее 8,6 световых лет. В том же созвездии есть звезды и поярче. Так, звезда Адара светит так, как 8700 вместе взятых Солнц на расстоянии 650 световых лет. А Полярная звезда, которую почему-то неверно считали самой яркой видимой звездой и которая располагается в оконечности Малой Медведицы на удалении 780 световых лет от нас, светит лишь в 6000 раз ярче Солнца. Зодиакальное созвездие Тельца примечательно тем, что в нем располагается необычная звезда, отличающаяся сверхгигантской плотностью и относительно малой сферической величиной. Как выяснили астрофизики, она в основном состоит из быстрых нейтронов, разлетающихся в разные стороны. Эта звезда какое-то время считалась самой яркой во Вселенной. А вообще наибольшей светимостью обладают голубые звезды. Ярчайшей из всех известных является звезда UW СМа, которая светит в 860 тыс. раз ярче Солнца. Со временем яркость звезд может изменяться. Поэтому может измениться и звезда-рекордсмен по яркости. Например, читая старинную летопись, датированную 4 июля 1054 года, можно узнать, что в созвездии Тельца светила самая яркая звезда, которая видна была невооруженным глазом даже днем. Но со временем она начала тускнеть и уже через год вообще пропала. Вскоре на том месте, где ярко сияла звезда, стали различать туманность, очень похожую на краба. Отсюда и название - Крабовидная туманность, которая родилась вследствие вспышки сверхновой звезды. Современные астрономы в центре этой туманности обнаружили мощный источник радиоизлучения, так называемый пульсар. Он и является остатком той яркой сверхновой звезды, описанной в старинной летописи. Итак: самая яркая звезда во Вселенной - голубая звезда UW СМа; самая яркая звезда на видимом небосклоне - Денеб; самая яркая из ближайших звезд - Сириус; самая яркая звезда в Северном полушарии - Арктур; самая яркая звезда на нашем северном небе - Вега; самая яркая планета Солнечной системы - Венера; самая яркая малая планета - Веста. Самая маленькая звезда
В 1986 году усилиями главным образом американских астрономов из обсерватории КиттПик в нашей Галактике была обнаружена ранее неизвестная звезда, получившая обозначение LHS 2924, масса которой раз в 20 меньше, чем у Солнца, а светимость меньше на шесть порядков. Эта звезда оказалась самой маленькой в нашей Галактике. Светоизлучение у нее возникает в результате проистекающей термоядерной реакции превращения водорода в гелий. Самая далекая звезда нашей Галактики
Группа астрономов из Вашингтонского университета обнаружила самую отдаленную звезду нашей Галактики - красный гигант 18-звездной величины. Эта звезда расположена в направлении созвездия Весов и удалена от Земли на расстояние, которое может преодолеть свет за 400 тыс. лет. Ясно, что эта звезда находится у пограничной черты, в так называемой зоне галактического гало. Ведь расстояние до этой звезды примерно в 4 раза превышает диаметр воображаемых просторов нашей Галактики. (Диаметр Млечного Пути оценивается примерно в 100 тыс. световых лет.) Удивительно, что самую далекую, довольнотаки яркую звезду открыли только в наше время, хотя ее наблюдали и ранее. По непонятным соображениям астрономы не обратили особого внимания на слабо светящееся пятнышко на звездном небосклоне и различающееся на фотопластинке. Что же получается? Люди видят звезду в течение четверти века и … не замечают ее. Совсем недавно американскими астрономами из обсерватории имени Лоуэлла была открыта еще одна из наиболее отдаленных звезд в периферийных пределах нашей Галактики. Эту звезду, уже потускневшую от «старости», можно поискать на небосклоне в расположении созвездия Девы, на расстоянии примерно 160 тыс. световых лет. Подобные открытия в темных (в прямом и переносном смысле слова) участках Млечного Пути позволяют внести важные корректировки при определении истинных значений массы и размеров нашей звездной системы в сторону их значительного увеличения. А это может серьезно повлиять на принятую в научной среде космологическую картину мироздания. Звезда с самым большим собственным движением
Звезда, открытая Э.Э. Барнардом в 1916 г., до сих пор является звездой с самым большим собственным движением. Неофициальное название звезды (звезда Барнарда) теперь общепризнанно. Ее собственное движение составляет 10,36 секунды дуги в год. Собственное движение звезды - это реальное движение в пространстве, видимое в проекции на небесную сферу перпендикулярно лучу зрения. Собственное движение зависит как от реальной скорости звезды в направлении, перпендикулярном линии, соединяющей звезду и Солнце, так и от расстояния: мы не заметим движения звезды, даже если она перемещается быстро, но находится на очень большом расстоянии. Звезда Барнарда - одна из самых близких к Солнцу звезд (следующая после Проксимы Центавра и двойной системы Альфа Центавра A и B). Кроме движения поперек луча зрения, звезда Барнарда движется и в направлении Солнца, приближаясь к нему на 0,036 светового года в столетие. Через 9000 лет она станет ближайшей к нам звездой, заняв место Проксимы Центавра. Самое сильное магнитное поле звезды
Если нейтронная звезда вращается достаточно быстро, она генерирует интенсивное магнитное поле. В результате быстрого вращения, обычно порядка секунды и менее, силовые линии поля изгибаются и перемешиваются. Магнитное поле, поддерживаемое электрическими токами, пронизывающими звезду, вращается вместе со звездой. Потоки радиоволн расходятся наружу от магнитных полюсов и рассекают пространство при вращении подобно лучу маяка. Нейтронные звезды, наблюдаемые в подобном состоянии, известны как пульсары благодаря своему пульсирующему излучению. Считается, что магнитные поля большинства молодых радиопульсаров равны 1012 – 1013 гауссов. У некоторых нейтронных звезд отмечаются небывало сильные магнитные поля, что привело даже к появлению нового термина – магнетар. Самое сильное магнитное поле, порожденное магнетаром, принадлежит пульсару PSR J1847-0130, который находится в созвездии Орла. Его магнитное поле по приблизительным оценкам достигает 1014 гауссов. Магнетары остаются активными только в течение 10 000 лет, а это означает, что миллионы их “дрейфуют” в нашей Галактике незамеченными. Самая близкая галактика
Карликовая галактика в созвездии Стрельца - самая близкая к нашей галактике Млечный Путь. Эта небольшая галактика настолько близка, что Млечный Путь как бы поглощает ее. Галактика в Стрельце лежит на расстоянии 80 тыс. световых лет от Солнца и 52 тыс. световых лет от центра Млечного Пути. Следующая самая близкая к нам галактика - Большое Магелланово Облако, находящееся в 170 тысячах световых лет от нас. До 1994 г., когда была открыта карликовая галактика в созвездии Стрельца, думали, что самой близкой галактикой является Большое Магелланово Облако. Первоначально карликовая галактика в Стрельце представляла собой сферу примерно в 1000 световых лет в поперечнике. Но теперь ее форма искажена гравитацией Млечного Пути, и галактика растянулась в длину на 10 тыс. световых лет. Несколько миллионов звезд, которые принадлежат карлику в Стрельце, ныне рассеяны по всему созвездию Стрельца. Поэтому, если просто смотреть на небо, то звезды этой галактики невозможно отличить от звезд нашей собственной Галактики.
Самая удаленная галактика Расстояние до галактики можно определить только в том случае, если удается получить ее спектр и измерить красное смещение. Развитие техники приводит к тому, что “рекорды дальности” у галактик постоянно улучшаются. Недавно была обнаружена новая галактика zVDF J022803-041618 с красным смещением 6,17. Она расположена в созвездии Кита около звезды омикрон Кита. Самая крупная галактика
Австралийский астроном Д. Малин в 1985 году при исследовании участка звездного неба в направлении созвездия Девы обнаружил новую галактику. Но на этом свою миссию Д. Малин посчитал завершенной. Только после повторного открытия этой галактики американскими астрофизиками в 1987 году оказалось, что это - спиральная галактика, самая крупная и в то же время самая темная из всех известных тогда науке. Расположенная от нас на расстоянии 715 млн световых лет, она имеет длину в поперечном сечении 770 тыс. световых лет, почти в 8 раз превышающую диаметр Млечного Пути. Светимость же этой галактики раз в 100 меньше светимости обычных спиральных галактик. Однако, как показало последующее развитие астрономии, в звездных каталогах числилась галактика и покрупнее. Из обширного класса слабых по светимости образований в Метагалактике, получивших название Маркаряна галактики, была выделена галактика за номером 348, открытая четверть века назад. Но тогда размеры галактики были явно занижены. Более поздние наблюдения американских астрономов с помощью радиотелескопа, расположенного в Сокорро, штат НьюМексико, позволили установить истинные ее размеры. Рекордсменка имеет в диаметре протяженность 1,3 млн световых лет, что уже в 13 раз превосходит диаметр Млечного Пути. Она удалена от нас на 300 млн световых лет.
Самая массивная черная дыра Наиболее массивные черные дыры находятся в центрах галактик. Среди тех черных дыр, для которых имеется достаточно данных, чтобы оценить их массу, наиболее массивная почти наверняка расположена в гигантской эллиптической галактике ике M 87, принадлежащей Скоплению галактик в Деве. Измерения, проделанные с помощью Космического телескопа “Хаббл”, позволяют предположить, что сверхмассивная черная дыра в центре галактики M 87 имеет массу, превышающую массу Солнца в 3 миллиарда раз. Спектры, полученные телескопом “Хаббл”, показывают, что газовые массы, находящиеся на расстоянии в 60 световых лет от центра галактики M 87, вращаются со скоростью 2 миллиона километров в час, и что ближе к центру скорость увеличивается. Удержать газ, вращающийся с такими скоростями, может только тяготение огромной массы. За последнее время было обнаружено несколько новых черных дыр по массам сходными с той, которая находится в галактике M 87. Они расположены в центрах эллиптических галактиках NGC 4649 (созвездие Девы), IC 1459 (созвездие Южной Рыбы) и в радиогалактике 3C 390.3 (созвездие Дракона).
Самый удаленный квазар Автоматические методы исследования неба, такие как Слоановский цифровой обзор неба (Sloan Digital Sky Survey) предоставляют астрономам возможность обнаруживать даже слабые и далекие квазары. Недавно был открыт квазар SDSS J114816.64+525150.3 с красным смещением 6,43 в созвездии Большая Медведица. Далекие квазары – редкое явление во Вселенной, и выглядят они как очень красные звезды. Для оценки расстояния до квазара необходимо привлечение положений общей теории относительности Эйнштейна. Теоретически скорость расширения Вселенной НЕ ограничена, а ограничена только скорость движения в пространстве. Таким образом, расстояние до квазара может насчитывать более 13 миллиардов световых лет. Фактически в результате вычислений мы находим расстояние до квазара, равное 27 миллиардом световых лет. Это значение можно получить, если сегодня “заморозить“ Вселенную во времени и измерить расстояние линейкой.
Самый яркий квазар Самый яркий квазар (и первый, который был идентифицирован как квазизвездный объект), известен по номеру в Третьем Кембриджском каталоге радиоисточников: 3C 273. Сам квазар представляет собой объект примерно 13-й звездной величины, хотя, как и у многих других квазаров, его яркость периодически меняется. До того, как положение квазара удалось определить достаточно точно (так, что стало возможным отождествить его с оптическим двойником), объект был известен как сильный радиоисточник в созвездии Девы. Идентификация была завершена в 1962 г., когда произошло покрытие квазара Луной. Красное смещение объекта 3C 273 оказалось равным 0,158. Следующие по яркости квазары имеют примерно 15-ю звездную величину. Самое большое шаровое скопление
Самое большое известное шаровое скопление - Омега Центавра (NGC 5139). Оно содержит миллионы звезд, сосредоточенных в объеме диаметром около 620 световых лет. Форма скопления не совсем сферическая: оно выглядит слегка сплюснутым. Кроме того, Омега Центавра является и самым ярким шаровым скоплением на небе, имея суммарную звездную величину 3,6. Оно удалено от нас на 17300 световых лет. Название скопления имеет такой же вид, какой обычно имеют названия отдельных звезд. Оно было присвоено скоплению в давнее время, когда при наблюдении невооруженным глазом распознать истинную природу объекта было невозможно. В шаровых скоплениях, как известно, содержатся некоторые самые старые звезды Галактики. Омега Центавра - одно из старейших скоплений. Поэтому многие его звезды в своем развитии достигли стадии красных гигантов.
Самое распространенное вещество в межзвездном пространстве В безжизненной межзвездной среде идентифицированы молекулы более 60 химических веществ. Больше всего в межзвездном пространстве водорода. По распространенности водород намного опережает суммарное содержание всех других химических элементов. Если взять за единицу содержание водорода, то относительное содержание гелия составит 0,09, кислорода - 0,0007, углерода - 0,0003, азота - 0,00009.
Самое большое водородное облако во Вселенной Внушительно большое облако нейтрального водорода обнаружено во Вселенной совершенно случайно при решении других астрономических задач в Аресибо американскими астрономами из Корнеллского университета. В поперечнике это облако раз в 10 больше нашей Галактики, а водородная масса в облаке почти в миллиард раз больше массы нашего светила. Облако располагается по направлению к созвездию Льва на расстоянии 65 млн световых лет от Земли и вращается вокруг центра масс со скоростью 80 км/с. Как предполагают ученые, из этого гигантского водородного облака возможно рождение новой галактики. Тем самым под сомнение подпадает столь распространенная теория большого взрыва об одновременном рождении всех галактик после колоссального взрыва во Вселенной. Самые быстрые вращения астрономических объектов
В природе быстрее всех вращаются пульсары - пульсирующие источники радиоизлучения. Скорость их вращения настолько огромна, что излучаемый ими свет фокусируется в тонкий конический пучок, который земной наблюдатель может зарегистрировать через равные промежутки времени. Ход атомных часов с наибольшей точностью можно выверить посредством пульсарных радиоизлучений. Самый быстрый астрономический объект обнаружен группой американских астрономов в конце 1982 года с помощью большого радиотелескопа в Аресибо на острове Пуэрто-Рико. Это сверхбыстровращающийся пульсар с присвоенным обозначением PSR 1937+215, располагающийся в созвездии Лисички на расстоянии 16 тыс. световых лет. Вообще пульсары известны человечеству всего четверть века. Впервые они были обнаружены в 1967 году группой английских астрономов во главе с Нобелевским лауреатом Э. Хьюишем как источники пульсирующего с высокой точностью электромагнитного излучения. Природа пульсаров до конца не изучена, но многие специалисты считают, что это - быстро вращающиеся вокруг собственной оси нейтронные звезды, возбуждающие сильные магнитные поля. А вот нововыявленный пульсар-рекордсмен вращается с частотой 642 об/с. Прежний рекорд принадлежал пульсару из центра Крабовидной туманности, дающему строго периодические импульсы радиоизлучения с периодом 0,033 об/с. Если другие пульсары излучают обычно волны в радиодиапазоне от метровых до сантиметровых, то данный пульсар излучает также в рентгеновском и гаммадиапазонах. И именно у этого пульсара впервые было обнаружено замедление пульсации.Недавно совместными усилиями исследователей из Европейского космического агентства и известной ЛосАламосской научной лаборатории при изучении рентгеновского излучения звезд была обнаружена новая двойная звездная система. Ученых больше всего заинтересовало необычайно быстрое вращение ее составляющих вокруг своего центра. Рекордно близким было также расстояние между небесными светилами, входящими в звездную пару. При этом возникающее мощное гравитационное поле включает в свою сферу действия близкорасположенный белый карлик, тем самым заставляя его вращаться с колоссальной скоростью - 1200 км/с. Интенсивность рентгеновского излучения этой пары звезд примерно в 10 тыс. раз выше излучения Солнца.
Самый яркий астрономический объект В 1984 году немецкий астроном Г. Кюр с сотрудниками обнаружил на звездном небосклоне столь ослепительный квазар (квазизвездный источник радиоизлучения), что даже на большом расстоянии от нашей планеты, исчисляемом многими сотнями световых лет, он по интенсивности посылаемого на Землю светоизлучения не уступил бы Солнцу, хотя отдален от нас космическимпространством, которое свет может преодолеть за 10 млрд лет. В яркости своей этот квазар не уступает яркости обычных 10 тыс. вместе взятых галактик. В звездном каталоге он получил номер S 50014+81 и считается самым ярким астрономическим объектом в безграничных просторах Вселенной. Несмотря на свои относительно малые размеры, достигающие в диаметре нескольких световых лет, квазар излучает намного больше энергии, чем целая гигантская галактика. Если величина радиоизлучения обычной галактики составляет 10 Дж/с, а оптическое излучение - 10 , то для квазара эти величины соответственно равны 10 и 10 Дж/с. Отметим, что природа квазара еще не выяснена, хотя существуют разные гипотезы: квазары - это либо остатки погибших галактик, либо, напротив, объекты начального этапа эволюции галактик, либо чтони-будь еще совсем новое.
Самый мощный магнит Вселенной Самое сильное магнитное поле во Вселенной образуется в окрестностях звезды пятнадцатой величины под астрономическим обозначением PG 1031+234. Это белый карлик примерно тех же размеров, что и Земля, но отстоящий от звезды на расстоянии 100 световых лет. Американские астрофизики из Аризонского университета в середине 80-х годов определили величину магнитной индукции в этом участке пространства и… не могли в нее поверить. Показания приборов были на уровне 70 тыс. тесел, или в гауссовых единицах - 700 млн. Такого сильного магнитного поля во Вселенной еще не наблюдалось. Ближайшая планета за пределами Солнечной системы
7 августа 2000 г группа астрономов, возглавляемая доктором Уильямом Кохраном из обсерватории "Макдо-налд" Техасского университета (США), объявила об открытии ближайшей планеты за пределами Солнечной системы. Планета размером, возможно, чуть больше Юпитера, вращается вокруг звезды эпсилон Эридана. Эта звезда, отстоящая от нас всего на 10,5 световых лет, одна из ближайших к Солнцу. В настоящее время эта звезда находится в основной стадии своего жизненного цикла.
Самая старая из известных планет В отдаленном шаровом скоплении M4 находится самая старая и дальняя из известных планет. Образовавшаяся 13 миллиардов лет назад и отделенная от Земли 5600 световых лет, она расположена по направлению к созвездию Скорпиона. Она вращается вокруг пары звезд – гелиевого белого карлика и быстро вращающейся нейтронной звезды. История открытия этой планеты восходит к 1988 г., когда в M4 был обнаружен пульсар, названный PSR B1620-26. Пульсар представляет собой нейтронную звезду со скоростью вращения 100 оборотов в секунду, регулярно посылающую радиоимпульсы. Вскоре после этого был обнаружен белый карлик благодаря его влиянию на подобный часам пульсар, поскольку две звезды обращались друг вокруг друга дважды за год. Позднее астрономы заметили другие особенности пульсара, которые родили предположение о том, что существует третий объект, вращающийся вокруг этой пары. Этот предполагаемый объект мог представлять собой планету, или коричневый карлик, или звезду низкой массы. Споры о его истинной природе не утихали в 90-е годы прошлого столетия. В 2003 г. с помощью Космического телескопа “Хаббл” астрономы положили конец этой дискуссии, измерив параметры белого карлика и использовав их для определения свойств этого третьего объекта. Имея массу, только в 2,5 раза превышающую массу Юпитера, этот объект слишком мал, чтобы быть звездой – по всей видимости он представляет собой планету. Этой древней планете требуется год, чтобы совершить один оборот вокруг двойной системы.